
LA-UR-20-22060
Approved for public release; distribution is unlimited.

Title: Sparse MP4

Author(s): Wang, Daniel Anping
Strauss, Charles Shelby Murton
Springer, Jacob Mitchell
Thresher, Austin Morgan
Pritchard, Howard Porter Jr.
Kenyon, Garrett

Intended for: Southwest Symposium on Image Analysis and Interpretation (SSIAI),
2020-03-29 (Santa Fe, New Mexico, United States)

Issued: 2021-02-26 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Sparse MP4
1st Daniel A. Wang

Ultra-Scale Research Center
Los Alamos National Laboratory

Los Alamos, USA
wang a daniel@lanl.gov

4nd Austin Thresher
Advanced Research in Cyber Systems

Los Alamos National Laboratory
Los Alamos, USA
athresher@lanl.gov

2nd Charles M. S. Strauss
New Mexico Consortium

Los Alamos, USA
charles.s.strauss@gmail.com

5rd Howard Pritchard
Ultra-Scale Research Center

Los Alamos National Laboratory
Los Alamos, USA
hpritchard@lanl.gov

3nd Jacob M. Springer
Swarthmore College
Swarthmore, USA

jspring1@swarthmore.edu

6th Garrett T. Kenyon
Computation, Computing and Statistical Sciences

Los Alamos National Laboratory
Los Alamos, USA
gkenyon@lanl.gov

Abstract—MP4 is currently the gold standard for video com-
pression. Here we demonstrate that MP4 can be augmented
by using a spatiotemporal sparse code optimized for the re-
construction of video portraits to up-sample data streams in
which 75% of the pixels have been removed. Lossless MP4 can
then be used to transmit the decimated video stream, yielding
additional compression via a hybrid algorithm we refer to as
Sparse MP4. We report that when compared with standard
MP4 tuned for a similar overall compression ratio, Sparse MP4
achieves significantly higher PSNR and similar SSIM scores.

Keywords - Video Compression; Sparse Coding; Bottleneck
Autoencoders; MP4

I. INTRODUCTION

Improvements in image and video compression draw signif-
icant commercial interest. Applications such as video calling
software require efficient compression of spatiotemporal data
in order to efficiently communicate information without un-
acceptable loss of quality. JPEG is a commonly used lossy
format for image compression while MP4 is the international
standard for compressing video images [1]. Bottleneck au-
toencoders can also perform lossy compression on images and
videos [2] [3] [4] by learning a latent representation optimized
for dimensional reduction while minimizing loss of content but
may still lose perceptually important information [5].

Previous work shows that sparse coding supports improved
compression of static image thumbnails compared to bottle-
neck autoencoders [6]. Sparse compression on static images
works by removing every other pixel prior to transmission,
employs a lossless compression algorithm to transmit the
decimated image, and finally uses an overcomplete dictionary
optimized for sparse reconstruction to infer the missing pixels
upon reception. Here, we employ a similar strategy for com-
pressing video portraits. The video stream is first decimated
by removing every other pixel as well as by removing every
other frame, yielding a raw compression ratio of 4:1. The
decimated video stream can be further compressed by applying
a lossless compression method, yielding a hybrid compression
technique that will be referred to as Sparse MP4 throughout

this paper. The missing pixels and frames are then inferred at
the receiving end using a spatiotemporal dictionary optimized
for the sparse reconstruction of video portraits. We report that
when compared to lossy MP4 tuned to the same compression
factor, Sparse MP4 achieves much higher PSNR values.

II. WHAT IS SPARSE CODING?

Sparse coding aims to infer an optimal representation of
an input by inferring a solution that uses the fewest and
presumably best features; the ”best” features being the ones
that capture high-order structure in the data. An ideal sparse
representation ought to reduce the amount of trivially active
neurons while simultaneously approaching zero reconstruction
error. Here, sparse reconstructions are generated according
to a Locally Competitive Algorithm [7], in which neurons
compete via lateral inhibition. Once a sparse representation
is inferred for a given input, the features are then refined
according to a local Hebbian Learning Rule that reduces
the reconstruction error given the sparse representation of
that input. Formally, finding a sparse representation involves
minimizing the following objective function in Equation 1:

E(I,φ,a) = min
{a,φ}

[
1

2
||I − φa||2 + λ||a||p] (1)

I is a vector that represents an input image. Given an
overcomplete dictionary of features φ, an ideal sparse rep-
resentation would find a set of coefficients a that can most
accurately reconstruct the input I while simultaneously min-
imizing a sparsity penalty. In the following, we assume the
sparsity penalty is given by ||a||1 although fractional norms
are possible. λ is a free parameter which controls the trade-off
that occurs between sparsity and reconstruction error.

Stochastic gradient descent (SGD) is used to train an
overcomplete dictionary initialized from a set of randomly
generated features. Videos are sampled randomly, but for
each video, frames were drawn in chronological order. This
chronology helps to rapidly find sparse representations because
the sparse representation of the new frames is initialized to

99978-1-7281-5745-0/20/$31.00 ©2020 IEEE SSIAI 2020

Authorized licensed use limited to: LANL Research Library. Downloaded on February 25,2021 at 20:21:28 UTC from IEEE Xplore. Restrictions apply.

the sparse representation of the previous frames. For sparse
coding, all frames were normalized to zero mean and unit
standard deviation. The update rule for the feature kernels can
be derived by taking the gradient of the cost function with
respect to φ as shown by Equation 2:

∆Φ ∝ −∂E
∂Φ

= a⊗ {I −Φa} (2)

equivalent to a local Hebbian update rule. Equation 2 was
augmented by a momentum term to speed up convergence.

The overcomplete dictionary of feature kernels consisted
of convolutional patches of size 18 × 18 spanning three
consecutive frames with a spatial stride of 2 [8].

A. The Dataset

The dataset used here for investigating compression quality
of Sparse MP4 is a cropped Face Forensics dataset [9] of
video portraits in which supplied bounding boxes were used
to track and crop out the faces of each subject per video.
A minimum square bounding box was determined that was
sufficiently large to include every instance of a particular face
in a given video portrait. Crops were then written as 128×128
individual frames at a target frame rate of 24 fps. A patch
size of 18× 18 pixels was used so that the network can only
effectively learn local motion. Any large scale motion within
the videos would completely pass outside the patches across
multiple frames.

B. PetaVision

To train a dictionary of spatiotemporal kernels for convo-
lutional sparse coding and to generate sparse representations
for each three frame sequence, we used PetaVision, a high-
performance, open-source, neurosimulation toolbox optimized
for sparse coding via LCA [10].

The basic set-up for inferring a sparse representation and
learning a dictionary of convolutional spatiotemporal features
using PetaVision is shown in Fig. 1. The input is passed to an
error layer that encodes the difference, or residual, between
the input and the reconstruction of that input. The error layer
drives the LCA layer (V1) using the transpose of the weight
matrix (green dashed line). The V1 layer, which encodes the
sparse activation coefficients, has two roles. First, the LCA
layer generates a reconstruction using a clone of the weight
matrix (solid green line). Secondly, the LCA layer connects
back to the error layer in order to update the weight matrix
according to a local Hebbian rule (thick black line). This basic
recurrent network can be applied to video simply by making
multiple input and error layers and associated weight matrices,
one for each video frame to be encoded.

C. Compression by Sparse Coding

Sparse coding compression is achieved by decimating the
input, transmitting the decimated video frames using a loss-
less compression algorithm, and then using a dictionary of
spatiotemporal features optimized for sparse reconstruction to
infer the missing information. Specifically, batches of three

Fig. 1. The basic experimental set-up for an experiment run on PetaVision.

frames were passed into the network at a time. The data was
down-sampled by first removing every other frame to achieve
a 50% compression. A checkerboard mask was then applied to
the remaining frames in order to remove every other remaining
pixel. This additional 50% compression on the data produces
a total rate of compression of 75% or a compression ratio of
4:1 on the original dataset. In order to recover the original
input, a dictionary spanning three frames is trained on the
decimated images. Although the network is set up to receive
input from three frames, the second frame in each batch of
three is removed due to the compression. Therefore in order
to up-sample, the network must not only recover the missing
pixels from the mask, but it must also infer the missing second
frame in each batch. Once the dictionaries are sufficiently
converged such that kernels no longer update during continued
training, the network for up-sampling was run on a decimated
validation set. The validation set is a cropped subset of Face
Forensics videos that were not used for training. The validation
reconstructions were evaluated to determine the quality of a
sparse coding model for up-sampling and compressing video
portraits.

Fig. 2 depicts an idealization of the steps necessary for
compression and what a sparse coding reconstruction ought
to look like given a masked caricatured input. The figure
also shows ideal learned features given the caricatured input.
Learned features hope to capture both local structure and local
movement. Example features might include various circles to
capture heads, eyes, and different curves to capture a moving
mouth. The network, by using the best features to represent
the smile and the frown found in the first and third frames,
ought to infer a neutral mouth shape for the missing middle
frame.

100

Authorized licensed use limited to: LANL Research Library. Downloaded on February 25,2021 at 20:21:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Left: An idealized depiction of compression and reconstruction given
a sparse coding network. In this depiction, sequences of three frames are taken
from the input. A checkerboard mask is applied to each frame, and the center
frame is complete removed. For each of the non-removed frames, the network
must infer the missing pixels. For the missing frame, the network must totally
interpolate the middle frame. Right: Idealized learned features given an input
like the top row of the Left figure. A dictionary for this kind of input might
learn these features: a circle for a head, smaller circles for eyes, and different
curves representing a mouth that moves over time.

Fig. 3. Representative example of up-sampling via convolutional spatiotem-
poral sparse coding. Top row: there are three frames in chronological order
cropped from a video portrait from the test set. Middle row: the input is then
masked by a checkerboard mask and the middle frame is completely omitted.
These three new frames are what the network actually sees. Bottom row: the
network infers sparse reconstructions of the compressed input, from which
the missing pixels and omitted frame can be in-painted.

Fig. 3 shows the compression and reconstructions of actual
frames from the Face Forensics dataset that were passed into
the network. Sequences of three frames were masked with
the center frame being completely removed. The network
then reconstructed the input by inferring missing pixels and
interpolating the missing center frame. Moving feature kernels
seem to successfully capture local physics as implied by Fig.
4.

Fig. 4. A block of four features sampled from the three dictionaries for each
frame in the up-sampling network. The four features shown in the blocks
each move in different directions as the frames progress. This indicates that
the network has learned local movement.

Fig. 5. Histograms of L2-norms of residuals from reconstructions of given
frames (black), interpolated frames (blue), and copied reconstructions from
the given frame prior to the interpolated frame (orange). Each line is the
mean of the histogram for its corresponding color.

III. UP-SAMPLING QUALITY

In order to measure the quality of reconstructions produced
by the up-sampling model, we made histograms of the cal-
culated L2-norms of the residual errors. In the histograms
represented by Fig. 5, the black histogram represents the
residual error for the sparse reconstructions of decimated
frames visible to the network. In the up-sampling model used,
these visible decimated frames were frames one and three in
each batch of three frames. As one can see, when the model
can see the frame to be reconstructed, the residual error is very
low.

The blue histogram represents the residual error from re-
constructing the interpolated second frames. In each batch
of three frames, this second frame was completely removed
and had to be entirely inferred. At a glance, it seems that
interpolation is working well. A third orange histogram was
plotted to determine what the residual error would look like
if the reconstruction for the previous frame was used as the
interpolation. That is to say, if the network could just take
the reconstructions of either frame one or frame three, pass
them off as an ”interpolation”, and still do better than our
truly interpolated frames; the interpolation indicated by the
blue histogram would not be meaningful. After plotting the
residual error from copying adjacent frames for interpolation,
it can be seen that the true interpolation is noticeably better
than copying. What this means is that the up-sampling network
is not simply copying adjacent frames, spatial up-sampling is
working and the network is successfully finding a reconstruc-
tion that is temporally ”between” the given frames.

IV. COMPRESSION QUALITY

The operating hypothesis being tested here is that com-
pression of natural videos by sparse coding outperforms the
compression quality of both a bottleneck autoencoder [11] [12]
as well as standard MP4 compression. We use the standard

101

Authorized licensed use limited to: LANL Research Library. Downloaded on February 25,2021 at 20:21:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. (Top Left) Sparse reconstruction and (Top Right) bottleneck autoen-
coder reconstruction compared compared to original input frame. (Bottom) A
frame from an MP4 video compressed at -crf = 4 is shown next to the original
frame.

metrics for compression quality PSNR and SSIM to measure
the quality of each compression scheme. While PSNR uses
the absolute error of individual pixels, SSIM samples the
structure, contrast, and luminance of the images to produce
a more perceptually-based measurement [13]. For both PSNR
and SSIM, a higher score corresponds to better compression.

We compared the reconstructions inferred from the dec-
imated video to the input frames using both PSNR and
SSIM. We also applied the same compression metrics to
the output of a three layer denoising bottleneck autoencoder
optimized on the same training data. Because input images
were compressed by 75% for the sparse coding network, the
bottleneck autoencoder was also set to compress its input at
a 75% rate. The code used to compress frames into an MP4
format at lossless or lossy rates is an open-source project called
FFmpeg [14]. Images were converted into an .mp4 format with
FFmpeg [14] by adjusting values of a parameter called -crf to
control for reconstruction quality and degree of compression.
A -crf value of 0 corresponds to lossless compression while
higher values correspond with increasingly lossy compression.
Example reconstructions from sparse coding, the bottleneck
autoencoder, and from MP4 are shown in Fig. 6

We obtained quantitative comparisons between compression
methods as follows: Starting with a set of PNG frames
extracted at 24fps from each video portrait in the validation
set, we used lossless MP4 compression to determine a baseline
compression ratio. Then, Sparse MP4 was applied to the same
set of videos, yielding an average compression factor of 2.8422
to 2.8482. By adjusting the -crf variable when compressing un-
decimated frames into MP4 videos with standalone MP4, -crf
values of 3 and 4 produce compression factors of 2.6330 and
2.9941 respectively. Videos produced from these values were
thus compared against Sparse MP4 to test for compression
quality.

When PSNR was applied to the reconstructions of the sparse
coding network in Table. I, the PSNR values ranged from an
average of 77.0338 for the second (interpolated) frames to
79.0245 for the first (masked) frames. PSNR applied to the
bottleneck autoencoder reconstructions produced values that
had an average range between 31.4293 for the first frames and

32.4929 for the second frames. When SSIM was applied to the
reconstructions from the bottleneck autoencoder in Table. II,
the lowest average SSIM value was 0.9841 for frame two and
the highest was 0.9929 for frame three. Similarly, the lowest
average value for the bottleneck autoencoder was 0.9429 for
frame three and the highest was 0.9472 for frame two.

TABLE I

PSNR Values - Scale 0-100
Methods Frame 1 Frame 2 Frame 3
Sparse Coding 79.0245 77.0338 78.6417
Bottleneck Autoencoder 31.4293 32.4929 32.0486

-crf = 3 -crf = 4
MP4 45.9641 45.4548

TABLE II

SSIM Values - Scale 0-1
Methods Frame 1 Frame 2 Frame 3
Sparse Coding 0.9923 0.9841 0.9929
Bottleneck Autoencoder 0.9430 0.9472 0.9429

-crf = 3 -crf = 4
MP4 0.9930 0.9923

For both PSNR and SSIM, the second frame for the sparse
coding model had the lowest average quality. It makes sense
that the second frame of the sparse coding network should have
lower values when compared against frames one and three.
This is because the sparse coding method of compression
completely removes the middle frame and thus the network
is required to entirely interpolate the middle frame whereas
the adjacent frames only need to infer every other pixel.
With PSNR there can be seen a significant discrepancy in
compression quality between sparse coding and the bottleneck
autoencoder with which the sparse coding model significantly
outperforms the bottleneck autoencoder (Table I). Conversely,
although SSIM indicates that sparse coding still outperforms
the bottleneck autoencoder (Table II), the difference is not as
significant as with PSNR.

PSNR was applied on videos compressed at -crf values
of 3 and 4 and returned average values of roughly 45.9641
and 45.4548 respectively (Table I). On the other hand, SSIM
produced respective average values of 0.9930 and 0.9923
(Table II). When compared against the PSNR and SSIM values
produced by sparse coding, sparse coding seems to perform
similarly well according to SSIM, but PSNR indicates that
sparse coding is able to outperform MP4 and produce higher
quality reconstructions for the same degree of compression.

V. CONCLUSION

This paper substantiates the hypothesis that video compres-
sion based on sparse coding can outperform the compression
provided by denoising bottleneck autoencoders according to
standard compression metrics PSNR and SSIM. Also, when
Sparse MP4 and standalone MP4 compression are compared
at the same rate of compression, Sparse MP4 can match the
compression quality of standalone MP4 in SSIM and in the
case of PSNR, can even outperform the state-of-the-art.

102

Authorized licensed use limited to: LANL Research Library. Downloaded on February 25,2021 at 20:21:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Gloe, A. Fischer, and M. Kirchner, “Forensic analysis of video file
formats,” Digital Investigation, vol. 11, pp. S68–S76, 2014.

[2] J. Pessoa, H. Aidos, P. Tomás, and M. A. T. Figueiredo, “End-to-end
learning of video compression using spatio-temporal autoencoders,”
2019. [Online]. Available: https://openreview.net/forum?id=HyllasActm

[3] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wanga, “Image and
video compression with neural networks: A review,” IEEE Transactions
on Circuits and Systems for Video Technology, 2019.

[4] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, “Deep learning-based video
coding: A review and a case study,” arXiv preprint arXiv:1904.12462,
2019.

[5] H. Zenil, N. A. Kiani, and J. Tegnér, “Quantifying loss of informa-
tion in network-based dimensionality reduction techniques,” Journal of
Complex Networks, vol. 4, no. 3, pp. 342–362, 2015.

[6] Y. Watkins, M. Sayeh, O. Iaroshenko, and G. T. Kenyon, “Image
compression: Sparse coding vs. bottleneck autoencoders,” CoRR, vol.
abs/1710.09926, 2017. [Online]. Available: http://arxiv.org/abs/1710.
09926

[7] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen,
“Sparse coding via thresholding and local competition in neural circuits,”
Neural computation, vol. 20, no. 10, pp. 2526–2563, 2008.

[8] P. F. Schultz, D. M. Paiton, W. Lu, and G. T. Kenyon, “Replicating
kernels with a short stride allows sparse reconstructions with fewer
independent kernels,” arXiv preprint arXiv:1406.4205, 2014.

[9] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. Nießner, “Faceforensics: A large-scale video dataset for forgery
detection in human faces,” CoRR, vol. abs/1803.09179, 2018. [Online].
Available: http://arxiv.org/abs/1803.09179

[10] 2019. [Online]. Available: https://github.com/PetaVision
[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[12] Y. Z. Watkins and M. R. Sayeh, “Image data compression and noisy
channel error correction using deep neural network,” Procedia Computer
Science, vol. 95, pp. 145–152, 2016.

[13] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010
20th International Conference on Pattern Recognition. IEEE, 2010,
pp. 2366–2369.

[14] FFmpeg Team, “Ffmpeg.” [Online]. Available: https://github.com/
FFmpeg/FFmpeg

103

Authorized licensed use limited to: LANL Research Library. Downloaded on February 25,2021 at 20:21:28 UTC from IEEE Xplore. Restrictions apply.

